## Friedrich-Naumann-Stiftung f.d.F. – December 2017, Dresden



# An Institutional Perspective On The Regulation of AI-based Technology

Christian Ulbrich

Rechtwissenschaftliches Institut, Universität Zürich

Center for Research in Economics and Well-Being, Universität Basel

Max-Planck-Institut für ausländisches und internationales Strafrecht, Freiburg i. Br.





- All applications start to spread in all areas quickly
  - E.g. credit scoring, insurance, e-commerce, educational evaluation, political campagains, medical diagnosis, operation of (stock) markets
- Expand their influence on human acting

- Common examples:
  - ➤ Google Search Algorithm
  - Facebook News Feed Algorithm

## Examples



 Northpoint's Correctional Offender Mangagement Profiling for Alternative Sanctions (COMPAS)

- ➤ Glenn Rodríguez
- Loomis v. Wisconsin

## Examples



Facebook vs. sex workers

- Regulation of traffic speed
  - "It has to be driven at adequate speed"

## Potential Risks



- Bias and social discrimination
- Manipulation (Why would you build an expansive algorithm if you can't bias it in your favor?)
- Surveillance
- Abuse of dominant market position (network effect)
- Reducing of Diversity
- Cognitive effects on human brain

## What?



- Not (strong) AI, just weak AI
- Learning -> Learning algorithms
- Machine Learning:
  - Answer to the question:

"How can we build computer systems that automatically improve with experience, and what are the fundamental laws that govern all learning processes?" (Tom Mitchell, 2006)

## What?





Input

(Supervised Learning)

Output

Data



Algorithm



Result

VS.

Data + Result



"Learner"



Algorithm, that turns Data into Result ("classifier")

## Examples



Weighted k-nearest neighbor algorithm

➤ Recommender Systems (E-Commerce)



Source: https://cs231n.github.io/







#### **Biological Neuron**



Source: Russel/Norvig (3rd. Ed.), p. 728



Source: https://cs231n.github.io/

### Artificial Neural Networks





#### Multi Layer Perceptron



Source: https://cs231n.github.io/

### How?



- Uniform approach possible?
  - Huge differences between "schools" of Machine Learning

- General treating as a "black box"?
  - ➤ Just input and output control (black box auditing)?
    - » Empirical tests
      - Legal admissibility of Field Experiments (Scraping)
      - Obligation to provide an API





#### Geisteswissenschaft/Digital Humanities

- > Transperancy
  - » Disclosure of the source code (code auditing)
  - » "Qualified transparency" (technical, practical, legal, conceptual functionality)

#### Law

- Sectoral regulation
  - » Traditional approach
  - » German regulation of self-driving cars





Transfer from Political economy

- Idea: "Learners" as institutions
  - Knowledge concerning institutions
    - » Determinants of "successful" institutions?
    - » Design of "appropriate" institutions?

Assumptions for a "constitution"?

## Friedrich-Naumann-Stiftung f.d.F. – December 2017, Dresden



# An Institutional Perspective On The Regulation of AI-based Technology

Christian Ulbrich
Rechtwissenschaftliches Institut, Universität Zürich
Center for Research in Economics and Well-Being, Universität Basel
Max-Planck-Institut für ausländisches und internationales Strafrecht, Freiburg i. Br.